Post-Harvest Technologies and Automation: Al-Driven Innovations in Food Processing and Supply Chains
DOI:
https://doi.org/10.32628/IJSRST25121170Keywords:
Artificial intelligence (AI), Post-harvest technologies, Food processing, Supply chain optimization, Automation, SustainabilityAbstract
The rapid advancements in artificial intelligence (AI) and automation are transforming post-harvest technologies, offering innovative solutions to improve food quality, safety, and supply chain efficiency. This paper reviews the role of AI-driven innovations in post-harvest food processing and logistics, with a focus on automation, predictive analytics, and quality control. AI technologies, such as machine learning, computer vision, and IoT integration, are optimizing processes like sorting, grading, packaging, and microbial detection, reducing food waste and extending shelf life. Moreover, AI-powered robotics and smart warehouses are streamlining transportation and inventory management, enhancing operational efficiency. The integration of AI in demand forecasting and supply chain optimization is further improving food traceability, minimizing disruptions, and reducing environmental impact. Despite the promising potential, challenges such as data quality, system integration, cost barriers, and regulatory concerns remain. The future of AI in post-harvest technologies presents opportunities for continued innovation, with advancements in deep learning, IoT, and global scalability, offering pathways to sustainable food systems. This paper concludes by discussing the impact of AI on the post-harvest sector and its potential to drive more efficient, resilient, and sustainable food supply chains worldwide.
Downloads
References
U. De Corato, “Improving the shelf-life and quality of fresh and minimally-processed fruits and vegetables for a modern food industry: A comprehensive critical review from the traditional technologies into the most promising advancements,” Crit. Rev. Food Sci. Nutr., vol. 60, no. 6, pp. 940–975, Mar. 2020, doi: 10.1080/10408398.2018.1553025. DOI: https://doi.org/10.1080/10408398.2018.1553025
K. Prasad, S. Jacob, and M. W. Siddiqui, “Fruit Maturity, Harvesting, and Quality Standards,” in Preharvest Modulation of Postharvest Fruit and Vegetable Quality, Elsevier, 2018, pp. 41–69. doi: 10.1016/B978-0-12-809807-3.00002-0. DOI: https://doi.org/10.1016/B978-0-12-809807-3.00002-0
S. Mandal, S. K. Kalakandan, and A. Sugumar, “Effective packaging and handling of food grains for quality and safety management,” in Unit Operations in Food Grain Processing, Elsevier, 2024, pp. 513–546. doi: 10.1016/B978-0-443-18965-4.00018-2. DOI: https://doi.org/10.1016/B978-0-443-18965-4.00018-2
M. Padhiary, P. Roy, and D. Roy, “The Future of Urban Connectivity: AI and IoT in Smart Cities,” in Sustainable Smart Cities and the Future of Urban Development, S. N. S. Al-Humairi, A. I. Hajamydeen, and A. Mahfoudh, Eds., IGI Global, 2024, pp. 33–66. doi: 10.4018/979-8-3693-6740-7.ch002. DOI: https://doi.org/10.4018/979-8-3693-6740-7.ch002
U. Hayat, W. Li, H. Bie, S. Liu, D. Guo, and K. Cao, “An Overview on Post-Harvest Technological Advances and Ripening Techniques for Increasing Peach Fruit Quality and Shelf Life,” Horticulturae, vol. 10, no. 1, p. 4, 2023. DOI: https://doi.org/10.3390/horticulturae10010004
A. Hoque, “Artificial Intelligence in Post-Harvest Drying Technologies: A Comprehensive Review on Optimization, Quality Enhancement, and Energy Efficiency,” Int. J. Sci. Res. IJSR, vol. 13, no. 11, pp. 493–502, Nov. 2024, doi: http://dx.doi.org/10.21275/SR241107163717. DOI: https://doi.org/10.21275/SR241107163717
P. Pathmanaban, B. K. Gnanavel, S. S. Anandan, and S. Sathiyamurthy, “Advancing post-harvest fruit handling through AI-based thermal imaging: applications, challenges, and future trends,” Discov. Food, vol. 3, no. 1, p. 27, Dec. 2023, doi: 10.1007/s44187-023-00068-2. DOI: https://doi.org/10.1007/s44187-023-00068-2
S. B. Dhal and D. Kar, “Leveraging artificial intelligence and advanced food processing techniques for enhanced food safety, quality, and security: a comprehensive review,” Discov. Appl. Sci., vol. 7, no. 1, p. 75, Jan. 2025, doi: 10.1007/s42452-025-06472-w. DOI: https://doi.org/10.1007/s42452-025-06472-w
S. Priya, R. Prasath, S. Bathrinath, T. Venkatamuni, S. K. Logesh, and S. Boopathi, “Smart Food Packaging Systems by Integrating HPC With Robotics and Electronics for Enhanced Efficiency:,” in Advances in Computer and Electrical Engineering, F. Smarandache and P. Majumder, Eds., IGI Global, 2024, pp. 437–466. doi: 10.4018/979-8-3693-6875-6.ch016. DOI: https://doi.org/10.4018/979-8-3693-6875-6.ch016
M. Padhiary, S. V. Tikute, D. Saha, J. A. Barbhuiya, and L. N. Sethi, “Development of an IOT-Based Semi-Autonomous Vehicle Sprayer,” Agric. Res., vol. 13, no. 3, Jun. 2024, doi: 10.1007/s40003-024-00760-4. DOI: https://doi.org/10.1007/s40003-024-00760-4
A. A. Laskar, K. Kumar, P. Roy, A. S. Mazumder, and B. Das, “Exploring the Role of Smart Systems in Farm Machinery for Soil Fertility and Crop Productivity,” Int. J. Res. Appl. Sci. Eng. Technol., vol. 12, no. 12, pp. 2063–2075, Dec. 2024, doi: 10.22214/ijraset.2024.66157. DOI: https://doi.org/10.22214/ijraset.2024.66157
M. Padhiary and P. Roy, “Collaborative Marketing Strategies in Agriculture for Global Reach and Local Impact:,” in Emerging Trends in Food and Agribusiness Marketing, S. C. Pant, V. G. Venkatesh, P. Panday, G. P. Shukla, and S. Parhi, Eds., IGI Global, 2024, pp. 219–252. doi: 10.4018/979-8-3693-6715-5.ch008. DOI: https://doi.org/10.4018/979-8-3693-6715-5.ch008
A. B. Rashid and M. A. K. Kausik, “AI revolutionizing industries worldwide: A comprehensive overview of its diverse applications,” Hybrid Adv., vol. 7, p. 100277, Dec. 2024, doi: 10.1016/j.hybadv.2024.100277. DOI: https://doi.org/10.1016/j.hybadv.2024.100277
J. Debnath, K. Kumar, K. Roy, R. D. Choudhury, and A. K. P. U, “Precision Agriculture: A Review of AI Vision and Machine Learning in Soil, Water, and Conservation Practice,” Int. J. Res. Appl. Sci. Eng. Technol., vol. 12, no. 12, pp. 2130–2141, Dec. 2024, doi: 10.22214/ijraset.2024.66166. DOI: https://doi.org/10.22214/ijraset.2024.66166
A. Hoque and M. Padhiary, “Automation and AI in Precision Agriculture: Innovations for Enhanced Crop Management and Sustainability,” Asian J. Res. Comput. Sci., vol. 17, no. 10, pp. 95–109, Oct. 2024, doi: 10.9734/ajrcos/2024/v17i10512. DOI: https://doi.org/10.9734/ajrcos/2024/v17i10512
D. Saha, M. Padhiary, J. A. Barbhuiya, T. Chakraborty, and L. N. Sethi, “Development of an IOT based Solenoid Controlled Pressure Regulation System for Precision Sprayer,” Int. J. Res. Appl. Sci. Eng. Technol., vol. 11, no. 7, pp. 2210–2216, Jul. 2023, doi: 10.22214/ijraset.2023.55103. DOI: https://doi.org/10.22214/ijraset.2023.55103
G. Rabha, K. Kumar, D. Kumar, and D. Kumar, “A Comprehensive Review of Integrating AI and IoT in Farm Machinery: Advancements, Applications, and Sustainability,” Int. J. Res. Anal. Rev., vol. 11, no. 4, 2024.
S. Vasudevan et al., “Machine Vision and Robotics for Primary Food Manipulation and Packaging: A Survey,” IEEE Access, vol. 12, pp. 152579–152613, 2024, doi: 10.1109/ACCESS.2024.3479781. DOI: https://doi.org/10.1109/ACCESS.2024.3479781
S. K. Amit, Md. M. Uddin, R. Rahman, S. M. R. Islam, and M. S. Khan, “A review on mechanisms and commercial aspects of food preservation and processing,” Agric. Food Secur., vol. 6, no. 1, p. 51, Dec. 2017, doi: 10.1186/s40066-017-0130-8. DOI: https://doi.org/10.1186/s40066-017-0130-8
K. Moons, G. Waeyenbergh, and L. Pintelon, “Measuring the logistics performance of internal hospital supply chains – A literature study,” Omega, vol. 82, pp. 205–217, Jan. 2019, doi: 10.1016/j.omega.2018.01.007. DOI: https://doi.org/10.1016/j.omega.2018.01.007
K. Lalpekhlua, A. Tirkey, S. Saranya, and P. J. Babu, “Post-harvest Management Strategies for Quality Preservation in Crops,” Int. J. Veg. Sci., vol. 30, no. 5, pp. 587–635, Sep. 2024, doi: 10.1080/19315260.2024.2392551. DOI: https://doi.org/10.1080/19315260.2024.2392551
S. B. Dhal and D. Kar, “Transforming Agricultural Productivity with AI-Driven Forecasting: Innovations in Food Security and Supply Chain Optimization,” Forecasting, vol. 6, no. 4, pp. 925–951, Oct. 2024, doi: 10.3390/forecast6040046. DOI: https://doi.org/10.3390/forecast6040046
O. R. Taiwo, H. Onyeaka, E. K. Oladipo, J. K. Oloke, and D. C. Chukwugozie, “Advancements in Predictive Microbiology: Integrating New Technologies for Efficient Food Safety Models,” Int. J. Microbiol., vol. 2024, no. 1, p. 6612162, Jan. 2024, doi: 10.1155/2024/6612162. DOI: https://doi.org/10.1155/2024/6612162
S. Karanth, S. Feng, D. Patra, and A. K. Pradhan, “Linking microbial contamination to food spoilage and food waste: the role of smart packaging, spoilage risk assessments, and date labeling,” Front. Microbiol., vol. 14, p. 1198124, Jun. 2023, doi: 10.3389/fmicb.2023.1198124. DOI: https://doi.org/10.3389/fmicb.2023.1198124
T. Fadiji, T. Bokaba, O. A. Fawole, and H. Twinomurinzi, “Artificial intelligence in postharvest agriculture: mapping a research agenda,” Front. Sustain. Food Syst., vol. 7, p. 1226583, Sep. 2023, doi: 10.3389/fsufs.2023.1226583. DOI: https://doi.org/10.3389/fsufs.2023.1226583
S. Dikshit, A. Atiq, M. Shahid, V. Dwivedi, and A. Thusu, “The Use of Artificial Intelligence to Optimize the Routing of Vehicles and Reduce Traffic Congestion in Urban Areas,” EAI Endorsed Trans. Energy Web, vol. 10, Dec. 2023, doi: 10.4108/ew.4613. DOI: https://doi.org/10.4108/ew.4613
J. E. Ruiz, I. Martínez, and C. Juárez, “Configuration based on Industry 4.0 technologies as a step towards an affordable smart warehouse,” J. Smart Cities Soc., vol. 3, no. 2, pp. 99–110, Jul. 2024, doi: 10.3233/SCS-240001. DOI: https://doi.org/10.3233/SCS-240001
I. Kollia, J. Stevenson, and S. Kollias, “AI-Enabled Efficient and Safe Food Supply Chain,” Electronics, vol. 10, no. 11, p. 1223, May 2021, doi: 10.3390/electronics10111223. DOI: https://doi.org/10.3390/electronics10111223
S. A. Bhat and N.-F. Huang, “Big Data and AI Revolution in Precision Agriculture: Survey and Challenges,” IEEE Access, vol. 9, pp. 110209–110222, 2021, doi: 10.1109/ACCESS.2021.3102227. DOI: https://doi.org/10.1109/ACCESS.2021.3102227
V. V. Vegesna, S. M. Prabhakaran, and P. Whig, “AI for Food Safety: Leveraging Artificial Intelligence to Ensure a Safe and Reliable Food Supply,” in Advances in Medical Diagnosis, Treatment, and Care, S. Patnaik, A. M. Hamad, D. Paul, P. K. Dutta, and M. Shafiq, Eds., IGI Global, 2024, pp. 501–524. doi: 10.4018/979-8-3693-5528-2.ch019. DOI: https://doi.org/10.4018/979-8-3693-5528-2.ch019
M. Osei-Kwarteng, M. C. Ogwu, G. K. Mahunu, and N. A. Afoakwah, “Post-harvest Food Quality and Safety in the Global South: Sustainable Management Perspectives,” in Food Safety and Quality in the Global South, M. C. Ogwu, S. C. Izah, and N. R. Ntuli, Eds., Singapore: Springer Nature Singapore, 2024, pp. 151–195. doi: 10.1007/978-981-97-2428-4_6. DOI: https://doi.org/10.1007/978-981-97-2428-4_6
A. Hoque, M. Padhiary, G. Prasad, and A. Tiwari, “Optimization of Fermentation Time, Temperature, and Tea Bed Thickness in CFM to Enhance the Biological Composition of CTC Black Tea,” J. Inst. Eng. India Ser. A, vol. 105, no. 4, 2024, doi: 10.1007/s40030-024-00853-x. DOI: https://doi.org/10.1007/s40030-024-00853-x
R. Kaur and J. A. Watson, “A Scoping Review of Postharvest Losses, Supply Chain Management, and Technology: Implications for Produce Quality in Developing Countries,” J. ASABE, vol. 67, no. 5, pp. 1103–1131, 2024, doi: 10.13031/ja.15660. DOI: https://doi.org/10.13031/ja.15660
A. Ali, C. Xia, N. Ouattara, I. Mahmood, and M. Faisal, “Economic and environmental consequences’ of postharvest loss across food supply Chain in the developing countries,” J. Clean. Prod., vol. 323, p. 129146, Nov. 2021, doi: 10.1016/j.jclepro.2021.129146. DOI: https://doi.org/10.1016/j.jclepro.2021.129146
J.-W. Han, M. Zuo, W.-Y. Zhu, J.-H. Zuo, E.-L. Lü, and X.-T. Yang, “A comprehensive review of cold chain logistics for fresh agricultural products: Current status, challenges, and future trends,” Trends Food Sci. Technol., vol. 109, pp. 536–551, Mar. 2021, doi: 10.1016/j.tifs.2021.01.066. DOI: https://doi.org/10.1016/j.tifs.2021.01.066
I. K. Opara, U. L. Opara, J. A. Okolie, and O. A. Fawole, “Machine Learning Application in Horticulture and Prospects for Predicting Fresh Produce Losses and Waste: A Review,” Plants, vol. 13, no. 9, p. 1200, Apr. 2024, doi: 10.3390/plants13091200. DOI: https://doi.org/10.3390/plants13091200
D. Saha and A. Manickavasagan, “Machine learning techniques for analysis of hyperspectral images to determine quality of food products: A review,” Curr. Res. Food Sci., vol. 4, pp. 28–44, 2021, doi: 10.1016/j.crfs.2021.01.002. DOI: https://doi.org/10.1016/j.crfs.2021.01.002
A. Sivaranjani, S. Senthilrani, B. Ashok Kumar, and A. Senthil Murugan, “An Overview of Various Computer Vision-based Grading System for Various Agricultural Products,” J. Hortic. Sci. Biotechnol., vol. 97, no. 2, pp. 137–159, Mar. 2022, doi: 10.1080/14620316.2021.1970631. DOI: https://doi.org/10.1080/14620316.2021.1970631
B. O. Olorunfemi, N. I. Nwulu, O. A. Adebo, and K. A. Kavadias, “Advancements in machine visions for fruit sorting and grading: A bibliometric analysis, systematic review, and future research directions,” J. Agric. Food Res., vol. 16, p. 101154, Jun. 2024, doi: 10.1016/j.jafr.2024.101154. DOI: https://doi.org/10.1016/j.jafr.2024.101154
M. Padhiary, N. Rani, D. Saha, J. A. Barbhuiya, and L. N. Sethi, “Efficient Precision Agriculture with Python-based Raspberry Pi Image Processing for Real-Time Plant Target Identification,” Int. J. Res. Anal. Rev., vol. 10, no. 3, pp. 539–545, 2023, doi: http://doi.one/10.1729/Journal.35531.
Y. Kumar, I. Kaur, and S. Mishra, “Foodborne Disease Symptoms, Diagnostics, and Predictions Using Artificial Intelligence-Based Learning Approaches: A Systematic Review,” Arch. Comput. Methods Eng., vol. 31, no. 2, pp. 553–578, Mar. 2024, doi: 10.1007/s11831-023-09991-0. DOI: https://doi.org/10.1007/s11831-023-09991-0
M. Padhiary and R. Kumar, “Assessing the Environmental Impacts of Agriculture, Industrial Operations, and Mining on Agro-Ecosystems,” in Smart Internet of Things for Environment and Healthcare, vol. 1165, M. Azrour, J. Mabrouki, A. Alabdulatif, A. Guezzaz, and F. Amounas, Eds., in Studies in Computational Intelligence, vol. 1165. , Cham: Springer Nature Switzerland, 2024, pp. 107–126. doi: 10.1007/978-3-031-70102-3_8. DOI: https://doi.org/10.1007/978-3-031-70102-3_8
V. Zatsu et al., “Revolutionizing the food industry: The transformative power of artificial intelligence-a review,” Food Chem. X, vol. 24, p. 101867, Dec. 2024, doi: 10.1016/j.fochx.2024.101867. DOI: https://doi.org/10.1016/j.fochx.2024.101867
A. Chauhan, B. Brouwer, and E. Westra, “Robotics for a Quality-Driven Post-harvest Supply Chain,” Curr. Robot. Rep., vol. 3, no. 2, pp. 39–48, Jun. 2022, doi: 10.1007/s43154-022-00075-8. DOI: https://doi.org/10.1007/s43154-022-00075-8
V. K. Pandey et al., “Machine Learning Algorithms and Fundamentals as Emerging Safety Tools in Preservation of Fruits and Vegetables: A Review,” Processes, vol. 11, no. 6, p. 1720, Jun. 2023, doi: 10.3390/pr11061720. DOI: https://doi.org/10.3390/pr11061720
A. Kaya, A. S. Keçeli, C. Catal, and B. Tekinerdogan, “Sensor Failure Tolerable Machine Learning-Based Food Quality Prediction Model,” Sensors, vol. 20, no. 11, p. 3173, Jun. 2020, doi: 10.3390/s20113173. DOI: https://doi.org/10.3390/s20113173
L. Bai, M. Liu, and Y. Sun, “Overview of Food Preservation and Traceability Technology in the Smart Cold Chain System,” Foods, vol. 12, no. 15, p. 2881, Jul. 2023, doi: 10.3390/foods12152881. DOI: https://doi.org/10.3390/foods12152881
M. Nardella, R. Moscetti, G. Bedini, A. Bandiera, S. S. N. Chakravartula, and R. Massantini, “Impact of traditional and innovative malaxation techniques and technologies on nutritional and sensory quality of virgin olive oil – A review,” Food Chem. Adv., vol. 2, p. 100163, Oct. 2023, doi: 10.1016/j.focha.2022.100163. DOI: https://doi.org/10.1016/j.focha.2022.100163
M. Padhiary, D. Roy, and P. Dey, “Mapping the Landscape of Biogenic Nanoparticles in Bioinformatics and Nanobiotechnology: AI-Driven Insights,” in Synthesizing and Characterizing Plant-Mediated Biocompatible Metal Nanoparticles, S. Das, S. M. Khade, D. B. Roy, and K. Trivedi, Eds., IGI Global, 2024, pp. 337–376. doi: 10.4018/979-8-3693-6240-2.ch014. DOI: https://doi.org/10.4018/979-8-3693-6240-2.ch014
L. Zhang, Q. Yang, and Z. Zhu, “The Application of Multi-Parameter Multi-Modal Technology Integrating Biological Sensors and Artificial Intelligence in the Rapid Detection of Food Contaminants,” Foods, vol. 13, no. 12, p. 1936, Jun. 2024, doi: 10.3390/foods13121936. DOI: https://doi.org/10.3390/foods13121936
O. F. Nwabor, H. Onyeaka, T. Miri, K. Obileke, C. Anumudu, and A. Hart, “A Cold Plasma Technology for Ensuring the Microbiological Safety and Quality of Foods,” Food Eng. Rev., vol. 14, no. 4, pp. 535–554, Dec. 2022, doi: 10.1007/s12393-022-09316-0. DOI: https://doi.org/10.1007/s12393-022-09316-0
N. Yawut, T. Mekwilai, N. Vichiansan, S. Braspaiboon, K. Leksakul, and D. Boonyawan, “Cold plasma technology: Transforming food processing for safety and sustainability,” J. Agric. Food Res., vol. 18, p. 101383, Dec. 2024, doi: 10.1016/j.jafr.2024.101383. DOI: https://doi.org/10.1016/j.jafr.2024.101383
Y. Liu, H. Pu, and D.-W. Sun, “Efficient extraction of deep image features using convolutional neural network (CNN) for applications in detecting and analysing complex food matrices,” Trends Food Sci. Technol., vol. 113, pp. 193–204, Jul. 2021, doi: 10.1016/j.tifs.2021.04.042. DOI: https://doi.org/10.1016/j.tifs.2021.04.042
T. Cui et al., “Ready-to-Cook Foods: Technological Developments and Future Trends—A Systematic Review,” Foods, vol. 13, no. 21, p. 3454, Oct. 2024, doi: 10.3390/foods13213454. DOI: https://doi.org/10.3390/foods13213454
M. Padhiary, P. Roy, P. Dey, and B. Sahu, “Harnessing AI for Automated Decision-Making in Farm Machinery and Operations: Optimizing Agriculture,” in Enhancing Automated Decision-Making Through AI, S. Hai-Jew, Ed., IGI Global, 2024, pp. 249–282. doi: 10.4018/979-8-3693-6230-3.ch008. DOI: https://doi.org/10.4018/979-8-3693-6230-3.ch008
M. Padhiary, “The Convergence of Deep Learning, IoT, Sensors, and Farm Machinery in Agriculture,” in Designing Sustainable Internet of Things Solutions for Smart Industries, IGI Global, 2024, pp. 109–142. doi: 10.4018/979-8-3693-5498-8.ch005. DOI: https://doi.org/10.4018/979-8-3693-5498-8.ch005
F. Tarlak, “The Use of Predictive Microbiology for the Prediction of the Shelf Life of Food Products,” Foods, vol. 12, no. 24, p. 4461, Dec. 2023, doi: 10.3390/foods12244461.
J. Ma et al., “Applications of Computer Vision for Assessing Quality of Agri-food Products: A Review of Recent Research Advances,” Crit. Rev. Food Sci. Nutr., vol. 56, no. 1, pp. 113–127, Jan. 2016, doi: 10.1080/10408398.2013.873885. DOI: https://doi.org/10.1080/10408398.2013.873885
M. Padhiary and R. Kumar, “Enhancing Agriculture Through AI Vision and Machine Learning: The Evolution of Smart Farming,” in Advances in Computational Intelligence and Robotics, D. Thangam, Ed., IGI Global, 2024, pp. 295–324. doi: 10.4018/979-8-3693-5380-6.ch012. DOI: https://doi.org/10.4018/979-8-3693-5380-6.ch012
Z. H. Khan, A. Khalid, and J. Iqbal, “Towards realizing robotic potential in future intelligent food manufacturing systems,” Innov. Food Sci. Emerg. Technol., vol. 48, pp. 11–24, Aug. 2018, doi: 10.1016/j.ifset.2018.05.011. DOI: https://doi.org/10.1016/j.ifset.2018.05.011
C. Shi et al., “Artificial neural network-based shelf life prediction approach in the food storage process: A review,” Crit. Rev. Food Sci. Nutr., vol. 64, no. 32, pp. 12009–12024, Dec. 2024, doi: 10.1080/10408398.2023.2245899. DOI: https://doi.org/10.1080/10408398.2023.2245899
Y. Y. F. Panduman, N. Funabiki, E. D. Fajrianti, S. Fang, and S. Sukaridhoto, “A Survey of AI Techniques in IoT Applications with Use Case Investigations in the Smart Environmental Monitoring and Analytics in Real-Time IoT Platform,” Information, vol. 15, no. 3, p. 153, Mar. 2024, doi: 10.3390/info15030153. DOI: https://doi.org/10.3390/info15030153
H. Feng, X. Wang, Y. Duan, J. Zhang, and X. Zhang, “Applying blockchain technology to improve agri-food traceability: A review of development methods, benefits and challenges,” J. Clean. Prod., vol. 260, p. 121031, Jul. 2020, doi: 10.1016/j.jclepro.2020.121031. DOI: https://doi.org/10.1016/j.jclepro.2020.121031
B. K. M. Powell, D. Machalek, and T. Quah, “Real-time optimization using reinforcement learning,” Comput. Chem. Eng., vol. 143, p. 107077, Dec. 2020, doi: 10.1016/j.compchemeng.2020.107077. DOI: https://doi.org/10.1016/j.compchemeng.2020.107077
J. Nayak, K. Vakula, P. Dinesh, B. Naik, and D. Pelusi, “Intelligent food processing: Journey from artificial neural network to deep learning,” Comput. Sci. Rev., vol. 38, p. 100297, Nov. 2020, doi: 10.1016/j.cosrev.2020.100297. DOI: https://doi.org/10.1016/j.cosrev.2020.100297
T. Tian, L. Z. hui, H. Zichen, and Y. Tang, “Enhancing Organizational Performance: Harnessing AI and NLP for User Feedback Analysis in Product Development,” 2024, arXiv. doi: 10.48550/ARXIV.2405.04692. DOI: https://doi.org/10.62836/iaet.v3i1.203
B. Canziani and S. MacSween, “Consumer acceptance of voice-activated smart home devices for product information seeking and online ordering,” Comput. Hum. Behav., vol. 119, p. 106714, Jun. 2021, doi: 10.1016/j.chb.2021.106714. DOI: https://doi.org/10.1016/j.chb.2021.106714
A. Garus, P. Christidis, A. Mourtzouchou, L. Duboz, and B. Ciuffo, “Unravelling the last-mile conundrum: A comparative study of autonomous delivery robots, delivery bicycles, and light commercial vehicles in 14 varied European landscapes,” Sustain. Cities Soc., vol. 108, p. 105490, Aug. 2024, doi: 10.1016/j.scs.2024.105490. DOI: https://doi.org/10.1016/j.scs.2024.105490
M. Padhiary, R. Kumar, and L. N. Sethi, “Navigating the Future of Agriculture: A Comprehensive Review of Automatic All-Terrain Vehicles in Precision Farming,” J. Inst. Eng. India Ser. A, vol. 105, no. 3, pp. 767–782, Sep. 2024, doi: 10.1007/s40030-024-00816-2. DOI: https://doi.org/10.1007/s40030-024-00816-2
L. K. Vora, A. D. Gholap, K. Jetha, R. R. S. Thakur, H. K. Solanki, and V. P. Chavda, “Artificial Intelligence in Pharmaceutical Technology and Drug Delivery Design,” Pharmaceutics, vol. 15, no. 7, p. 1916, Jul. 2023, doi: 10.3390/pharmaceutics15071916. DOI: https://doi.org/10.3390/pharmaceutics15071916
P.-J. Wu and Y.-C. Tai, “Artificial intelligence-based food-quality and warehousing management for food banks’ inbound logistics,” J. Enterp. Inf. Manag., vol. 37, no. 1, pp. 307–325, Feb. 2024, doi: 10.1108/JEIM-10-2022-0398. DOI: https://doi.org/10.1108/JEIM-10-2022-0398
M. Shamsuddoha, E. A. Khan, M. M. H. Chowdhury, and T. Nasir, “Revolutionizing Supply Chains: Unleashing the Power of AI-Driven Intelligent Automation and Real-Time Information Flow,” Information, vol. 16, no. 1, p. 26, Jan. 2025, doi: 10.3390/info16010026. DOI: https://doi.org/10.3390/info16010026
M. Soori, F. K. G. Jough, R. Dastres, and B. Arezoo, “AI-Based Decision Support Systems in Industry 4.0, A Review,” J. Econ. Technol., p. S2949948824000374, Aug. 2024, doi: 10.1016/j.ject.2024.08.005. DOI: https://doi.org/10.1016/j.ject.2024.08.005
J. L. Vilas-Boas, J. J. P. C. Rodrigues, and A. M. Alberti, “Convergence of Distributed Ledger Technologies with Digital Twins, IoT, and AI for fresh food logistics: Challenges and opportunities,” J. Ind. Inf. Integr., vol. 31, p. 100393, Feb. 2023, doi: 10.1016/j.jii.2022.100393. DOI: https://doi.org/10.1016/j.jii.2022.100393
P. Helo and Y. Hao, “Artificial intelligence in operations management and supply chain management: an exploratory case study,” Prod. Plan. Control, vol. 33, no. 16, pp. 1573–1590, Dec. 2022, doi: 10.1080/09537287.2021.1882690. DOI: https://doi.org/10.1080/09537287.2021.1882690
A. M. Khedr and S. R. S, “Enhancing supply chain management with deep learning and machine learning techniques: A review,” J. Open Innov. Technol. Mark. Complex., vol. 10, no. 4, p. 100379, Dec. 2024, doi: 10.1016/j.joitmc.2024.100379. DOI: https://doi.org/10.1016/j.joitmc.2024.100379
S. A. Mohamed, M. A. Mahmoud, M. N. Mahdi, and S. A. Mostafa, “Improving Efficiency and Effectiveness of Robotic Process Automation in Human Resource Management,” Sustainability, vol. 14, no. 7, p. 3920, Mar. 2022, doi: 10.3390/su14073920. DOI: https://doi.org/10.3390/su14073920
K. Kudashkina, M. G. Corradini, P. Thirunathan, R. Y. Yada, and E. D. G. Fraser, “Artificial Intelligence technology in food safety: A behavioral approach,” Trends Food Sci. Technol., vol. 123, pp. 376–381, May 2022, doi: 10.1016/j.tifs.2022.03.021. DOI: https://doi.org/10.1016/j.tifs.2022.03.021
R. Jedermann, M. Nicometo, I. Uysal, and W. Lang, “Reducing food losses by intelligent food logistics,” Philos. Trans. R. Soc. Math. Phys. Eng. Sci., vol. 372, no. 2017, p. 20130302, Jun. 2014, doi: 10.1098/rsta.2013.0302. DOI: https://doi.org/10.1098/rsta.2013.0302
B. Ameh, “Digital tools and AI: Using technology to monitor carbon emissions and waste at each stage of the supply chain, enabling real-time adjustments for sustainability improvements,” Int. J. Sci. Res. Arch., vol. 13, no. 1, pp. 2741–2757, Oct. 2024, doi: 10.30574/ijsra.2024.13.1.1995. DOI: https://doi.org/10.30574/ijsra.2024.13.1.1995
M. Meenu, C. Kurade, B. C. Neelapu, S. Kalra, H. S. Ramaswamy, and Y. Yu, “A concise review on food quality assessment using digital image processing,” Trends Food Sci. Technol., vol. 118, pp. 106–124, Dec. 2021, doi: 10.1016/j.tifs.2021.09.014. DOI: https://doi.org/10.1016/j.tifs.2021.09.014
F. Tarlak, “The Use of Predictive Microbiology for the Prediction of the Shelf Life of Food Products,” Foods, vol. 12, no. 24, p. 4461, Dec. 2023, doi: 10.3390/foods12244461. DOI: https://doi.org/10.3390/foods12244461
M. Pérez-Gomariz, A. López-Gómez, and F. Cerdán-Cartagena, “Artificial Neural Networks as Artificial Intelligence Technique for Energy Saving in Refrigeration Systems—A Review,” Clean Technol., vol. 5, no. 1, pp. 116–136, Jan. 2023, doi: 10.3390/cleantechnol5010007. DOI: https://doi.org/10.3390/cleantechnol5010007
M. Padhiary, “Bridging the gap: Sustainable automation and energy efficiency in food processing,” Agric. Eng. Today, vol. 47, no. 3, pp. 47–50, 2023, doi: https://doi.org/10.52151/aet2023473.1678.
S. Doshi, S. Jangir, and P. Gohil, “Role of Blockchain Technology in Enhancing Supplychain Traceability, Transparency and Efficiency,” J. Exp. Agric. Int., vol. 46, no. 5, pp. 636–653, Apr. 2024, doi: 10.9734/jeai/2024/v46i52419. DOI: https://doi.org/10.9734/jeai/2024/v46i52419
E. A. Abaku, T. E. Edunjobi, and A. C. Odimarha, “Theoretical approaches to AI in supply chain optimization: Pathways to efficiency and resilience,” Int. J. Sci. Technol. Res. Arch., vol. 6, no. 1, pp. 092–107, Mar. 2024, doi: 10.53771/ijstra.2024.6.1.0033. DOI: https://doi.org/10.53771/ijstra.2024.6.1.0033
R. Dhillon and Q. Moncur, “Small-Scale Farming: A Review of Challenges and Potential Opportunities Offered by Technological Advancements,” Sustainability, vol. 15, no. 21, p. 15478, Oct. 2023, doi: 10.3390/su152115478. DOI: https://doi.org/10.3390/su152115478
M. Pervin, S. K. Roy, and G.-W. Weber, “Analysis of inventory control model with shortage under time-dependent demand and time-varying holding cost including stochastic deterioration,” Ann. Oper. Res., vol. 260, no. 1–2, pp. 437–460, Jan. 2018, doi: 10.1007/s10479-016-2355-5. DOI: https://doi.org/10.1007/s10479-016-2355-5
C. Scott, H. Lundgren, and P. Thompson, Guide to Supply Chain Management: An End to End Perspective. in Management for Professionals. Cham: Springer International Publishing, 2018. doi: 10.1007/978-3-319-77185-4. DOI: https://doi.org/10.1007/978-3-319-77185-4
U. Agarwal, V. Rishiwal, Mohd. Shiblee, M. Yadav, and S. Tanwar, “Blockchain-based intelligent tracing of food grain crops from production to delivery,” Peer--Peer Netw. Appl., vol. 17, no. 6, pp. 3722–3749, Nov. 2024, doi: 10.1007/s12083-024-01780-1. DOI: https://doi.org/10.1007/s12083-024-01780-1
N. Kshetri, “Blockchain’s Role in Enhancing Quality and Safety and Promoting Sustainability in the Food and Beverage Industry,” Sustainability, vol. 15, no. 23, p. 16223, Nov. 2023, doi: 10.3390/su152316223. DOI: https://doi.org/10.3390/su152316223
A. Reyana and S. Kautish, “Machine learning techniques for route optimizations and logistics management description,” in Computational Intelligence Techniques for Sustainable Supply Chain Management, Elsevier, 2024, pp. 197–224. doi: 10.1016/B978-0-443-18464-2.00010-8. DOI: https://doi.org/10.1016/B978-0-443-18464-2.00010-8
V. Pasupuleti, B. Thuraka, C. S. Kodete, and S. Malisetty, “Enhancing Supply Chain Agility and Sustainability through Machine Learning: Optimization Techniques for Logistics and Inventory Management,” Logistics, vol. 8, no. 3, p. 73, Jul. 2024, doi: 10.3390/logistics8030073. DOI: https://doi.org/10.3390/logistics8030073
N. Shobhana, “AI-Powered Supply Chains Towards Greater Efficiency:,” in Advances in Logistics, Operations, and Management Science, P. C. N. Figueiredo, Ed., IGI Global, 2024, pp. 229–249. doi: 10.4018/979-8-3693-0712-0.ch011. DOI: https://doi.org/10.4018/979-8-3693-0712-0.ch011
R. M. Ellahi, L. C. Wood, and A. E.-D. A. Bekhit, “Blockchain-Based Frameworks for Food Traceability: A Systematic Review,” Foods, vol. 12, no. 16, p. 3026, Aug. 2023, doi: 10.3390/foods12163026. DOI: https://doi.org/10.3390/foods12163026
R. B. Abdallah, H. B. Aribi, E. B. Amara, I. Othmeni, and S. Fattouch, “Artificial Intelligence for Sustainable Food Systems:,” in Practice, Progress, and Proficiency in Sustainability, B. K. Mishra, Ed., IGI Global, 2024, pp. 457–477. doi: 10.4018/979-8-3693-1638-2.ch028. DOI: https://doi.org/10.4018/979-8-3693-1638-2.ch028
R. Salgado, G. Alvarado, and L. Loo, “Optimization of Energy Demand Management in Cold Storage Systems: Advances through the Integration of IoT, Machine Learning, and AI,” in 2024 IEEE Latin American Conference on Computational Intelligence (LA-CCI), Bogota D.C., Colombia: IEEE, Nov. 2024, pp. 1–6. doi: 10.1109/LA-CCI62337.2024.10814783. DOI: https://doi.org/10.1109/LA-CCI62337.2024.10814783
M. Padhiary, “Membrane Technologies for Treating Wastewater in the Food Processing Industry: Practices and Challenges,” in Research Trends in Food Technology and Nutrition, vol. 27, AkiNik Publications, 2024, pp. 37–62. doi: 10.22271/ed.book.2817. DOI: https://doi.org/10.22271/ed.book.2817
J. Kern, “The Digital Transformation of Logistics: A Review About Technologies and Their Implementation Status,” in The Digital Transformation of Logistics, 1st ed., M. Sullivan and J. Kern, Eds., Wiley, 2021, pp. 361–403. doi: 10.1002/9781119646495.ch25. DOI: https://doi.org/10.1002/9781119646495.ch25
A. Hoque, A. Sadique Mazumder, S. Roy, P. Saikia, and K. Kumar, “Transformative Approaches to Agricultural Sustainability: Automation, Smart Greenhouses, and AI,” Int. J. Res. Appl. Sci. Eng. Technol., vol. 13, no. 1, pp. 1011–1023, Jan. 2025, doi: 10.22214/ijraset.2025.66494. DOI: https://doi.org/10.22214/ijraset.2025.66494
S. Yakoubi, “Sustainable Revolution: AI-Driven Enhancements for Composite Polymer Processing and Optimization in Intelligent Food Packaging,” Food Bioprocess Technol., vol. 18, no. 1, pp. 82–107, Jan. 2025, doi: 10.1007/s11947-024-03449-2. DOI: https://doi.org/10.1007/s11947-024-03449-2
D. Hoehn et al., “A critical review on food loss and waste quantification approaches: Is there a need to develop alternatives beyond the currently widespread pathways?,” Resour. Conserv. Recycl., vol. 188, p. 106671, Jan. 2023, doi: 10.1016/j.resconrec.2022.106671. DOI: https://doi.org/10.1016/j.resconrec.2022.106671
K. S. Kyaw, S. C. Adegoke, C. K. Ajani, O. F. Nwabor, and H. Onyeaka, “Toward in-process technology-aided automation for enhanced microbial food safety and quality assurance in milk and beverages processing,” Crit. Rev. Food Sci. Nutr., vol. 64, no. 6, pp. 1715–1735, Feb. 2024, doi: 10.1080/10408398.2022.2118660. DOI: https://doi.org/10.1080/10408398.2022.2118660
K. B. Chhetri, “Applications of Artificial Intelligence and Machine Learning in Food Quality Control and Safety Assessment,” Food Eng. Rev., vol. 16, no. 1, pp. 1–21, Mar. 2024, doi: 10.1007/s12393-023-09363-1. DOI: https://doi.org/10.1007/s12393-023-09363-1
M. Padhiary, J. A. Barbhuiya, D. Roy, and P. Roy, “3D printing applications in smart farming and food processing,” Smart Agric. Technol., vol. 9, p. 100553, Dec. 2024, doi: 10.1016/j.atech.2024.100553. DOI: https://doi.org/10.1016/j.atech.2024.100553
M. Padhiary and P. Roy, “Advancements in Precision Agriculture: Exploring the Role of 3D Printing in Designing All-Terrain Vehicles for Farming Applications,” Int. J. Sci. Res. IJSR, vol. 13, no. 5, pp. 861–868, May 2024, doi: 10.21275/SR24511105508. DOI: https://doi.org/10.21275/SR24511105508
D. Roy, M. Padhiary, P. Roy, and J. A. Barbhuiya, “Artificial Intelligence-Driven Smart Aquaculture: Revolutionizing Sustainability through Automation and Machine Learning,” LatIA, vol. 2, p. 116, Dec. 2024, doi: 10.62486/latia2024116. DOI: https://doi.org/10.62486/latia2024116
M. Padhiary, “Harmony under the Sun: Integrating Aquaponics with Solar-Powered Fish Farming,” in Introduction to Renewable Energy Storage and Conversion for Sustainable Development, vol. 1, AkiNik Publications, 2024, pp. 31–58. [Online]. Available: https://doi.org/10.22271/ed.book.2882 DOI: https://doi.org/10.22271/ed.book.2882
M. Padhiary, “Status of Farm Automation, Advances, Trends, and Scope in India,” Int. J. Sci. Res. IJSR, vol. 13, no. 7, pp. 737–745, Jul. 2024, doi: 10.21275/SR24713184513. DOI: https://doi.org/10.21275/SR24713184513
A. Jha, J. A. Moses, and C. Anandharamakrishnan, “Smartphone-based detection devices for the agri-food industry,” in Smartphone-Based Detection Devices, Elsevier, 2021, pp. 269–310. doi: 10.1016/B978-0-12-823696-3.00001-5. DOI: https://doi.org/10.1016/B978-0-12-823696-3.00001-5
Downloads
Published
Issue
Section
License
Copyright (c) 2025 International Journal of Scientific Research in Science and Technology
This work is licensed under a Creative Commons Attribution 4.0 International License.