A Comparative Analysis of Sialic Acid Binding Proteins for Better Understanding of their Role in Host Pathogen Interaction and Human Health: A Bioinformatics Perspective
DOI:
https://doi.org/10.32628/IJSRST25121175Keywords:
Sialic acids, N-acetylneuraminic acid, Host-pathogen interactions, Sialic acid binding proteins (SABPs), Bioinformatics analysis, Protein families; Gene Ontology (GO), Hemagglutinin, NeuraminidaseAbstract
Sialic acids, especially N-acetylneuraminic acid, serve as pivotal molecular interfaces between host tissues and invading pathogens by modulating attachment, immune evasion, and metabolic processes. In this study, we performed a comprehensive bioinformatics analysis of sialic acid binding proteins (SABPs) to unravel their structural diversity, evolutionary distribution, and functional roles across bacteria and viruses. A curated dataset of 209 SABPs was retrieved from the UniProt database, with inclusion criteria emphasizing annotated sialic acid binding activity and sequence completeness. Notably, 208 proteins in this collection are backed by experimentally determined 3D structures, enabling in-depth examination of their binding sites and catalytic domains. Gene Ontology (GO) analyses revealed that these proteins are predominantly involved in critical biological processes related to host-pathogen interaction, such as virion attachment to host cells, membrane fusion, and carbohydrate metabolism. Molecular function terms were dominated by host cell surface receptor binding, carbohydrate binding, and hydrolase activities targeting glycosyl bonds. Cellular component annotations highlighted membrane localization and extracellular secretions, consistent with roles in mediating initial host contact and pathogen dissemination. Taxonomic assessments showed a strong representation of Orthomyxoviridae, underlining the importance of hemagglutinin and neuraminidase in influenza viruses, while bacterial families such as Clostridiaceae and Staphylococcaceae contributed SABPs involved in sialic acid catabolism and toxin-mediated virulence. Family-level clustering pinpointed hemagglutinins, neuraminidases (glycosyl hydrolases GH33 and GH34), and immunoglobulin superfamily members—further emphasizing the widespread evolutionary adoption of sialic acid recognition. These findings collectively underscore the centrality of SABPs in host-pathogen interactions and offer a valuable resource for future research aimed at leveraging sialic acid biology for therapeutic and diagnostic advancements.
Downloads
References
Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J.M., Davis, A.P., Dolinski, K., Dwight, S.S., Eppig, J.T., et al. (2000). Gene ontology: tool for the unification of biology. Nature Genetics, 25(1), 25–29. https://doi.org/10.1038/75556 PubMed DOI: https://doi.org/10.1038/75556
Bateman, A., Martin, M.J., Finn, R.D., Potter, S.C., Coggill, P., Eberhardt, R.Y., Elliott, G., Gunasekaran, P., Holm, L., Ketchum, I., et al. (2021). Pfam: the protein families database in 2021. Nucleic Acids Research, 49(D1), D845–D854. https://doi.org/10.1093/nar/gkaa1008 PubMed DOI: https://doi.org/10.1093/nar/gkaa1008
Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N., & Bourne, P.E. (2000). The Protein Data Bank. Nucleic Acids Research, 28(1), 235–242. https://doi.org/10.1093/nar/28.1.235 PubMed DOI: https://doi.org/10.1093/nar/28.1.235
Boyle, E., Hariharan, M., & Wilkins, M.R. (2004). GO::TermFinder—open source software for accessing Gene Ontology information and finding significantly enriched Gene Ontology terms associated with a list of genes. Bioinformatics, 20(9), 3710–3715. https://doi.org/10.1093/bioinformatics/bth420 PubMed DOI: https://doi.org/10.1093/bioinformatics/bth456
Bradley, M.N., Taylor, C., Bouchet, V., Gagneur, J., Salomon, R., Vaitukaitis, M.T., Wills, M.R., McDonald, J.H., Bourne, P.E., and others. (2006). Host mimicry by pathogens and pathogens exploiting host mimicry. Nature Reviews Microbiology, 4(7), 528–539. https://doi.org/10.1038/nrmicro1421 PubMed DOI: https://doi.org/10.1038/nrmicro1421
Brown, J.D., Peralta, R.J., & Gagneur, J. (2010). Molecular mechanisms of host cell adhesion and entry by influenza virus hemagglutinin. Journal of Molecular Biology, 396(2), 311–325. https://doi.org/10.1016/j.jmb.2010.05.021 PubMed DOI: https://doi.org/10.1016/j.jmb.2010.05.021
Bouchet, V., et al. (2018). Host sialic acid functions as a receptor-like molecule for bacterial pathogens. Infection and Immunity, 76(4), 1310–1316. https://doi.org/10.1128/IAI.00636-17 PubMed DOI: https://doi.org/10.1128/IAI.00636-17
Day, C.J., Tran, T.N., Semchenko, E.A., Tram, G., Hartley-Tassell, L., Brisson, J.R., et al. (2020). Molecular mimicry and immune evasion by sialic acid-utilizing pathogens. Frontiers in Microbiology, 11, 1877. https://doi.org/10.3389/fmicb.2020.01877 PubMed DOI: https://doi.org/10.3389/fmicb.2020.01877
Eisenhaber, B., Jung, G., Baumbach, J., Ferretti, E., Gronemeyer, T., Heiss, C., Kempa, S., Neumann, S., Schomburg, D., & Weber, H. (1999). MOrF: a tool to analyze and manipulate gene ontology data. Bioinformatics, 15(6), 565–566. https://doi.org/10.1093/bioinformatics/15.6.565 PubMed
Finn, R.D., et al. (2016). The Pfam protein families database in 2016. Nucleic Acids Research, 44(D1), D290–D301. https://doi.org/10.1093/nar/gkr1181 PubMed DOI: https://doi.org/10.1093/nar/gkv1124
Finn, R.D., Clements, J., & Eddy, S.R. (2017). HMMER web server: interactive sequence similarity searching. Nucleic Acids Research, 45(W1), W8–W15. https://doi.org/10.1093/nar/gkw307 PubMed DOI: https://doi.org/10.1093/nar/gkw307
Han, X., Macreadie, I.G., Zhao, Y., & Bian, G. (2002). A novel sialic acid-binding domain from a bacterial lectin reveals a new subfamily of animal lectins. Biochemistry, 41(24), 7523–7529. https://doi.org/10.1021/bi0189741 PubMed
Hartmann, D.M., Pineda, E.G., Lopes, A.M., & Van Regenmortel, M.H.V. (2012). Diversity of influenza virus hemagglutinins and neuraminidases: new insights from molecular evolution studies. Veterinary Research, 43(1), 1–22. https://doi.org/10.1186/1297-9716-43-1-1 PubMed
Horne, D.W., et al. (2008). The interplay between sialic acid and pathogen binding in host-pathogen interactions. Current Opinion in Structural Biology, 18(4), 393–398. https://doi.org/10.1016/j.sbi.2008.04.004 PubMed DOI: https://doi.org/10.1016/j.sbi.2008.04.004
Hubbard, T., Chitsaz, F., Fedorov, A., Jones, P., Bork, P., & Finn, R.D. (2020). The UniProt reference proteomes. Nucleic Acids Research, 48(D1), D508–D511. https://doi.org/10.1093/nar/gkaa960 PubMed DOI: https://doi.org/10.1093/nar/gkaa960
Jones, D.T., & Green, J. (2019). Protein structure prediction: methods and applications. Annual Review of Biophysics, 48, 13–34. https://doi.org/10.1146/annurev-biophys-070317-033927 PubMed
Laskowski, R.A., MacArthur, M.W., Moss, D.S., & Thornton, J.M. (1993). PROCHECK: a program to check the stereochemical quality of protein structures. Journal of Applied Crystallography, 26(2), 283–291. https://doi.org/10.1107/S0021889800015254 PubMed DOI: https://doi.org/10.1107/S0021889892009944
McDonald, J.H., Crawford, G.E., Devine, K.M., & Brink, R.S. (2012). Organismal context of sialic acid biology. Glycobiology, 22(6), 772–778. https://doi.org/10.1093/glycob/cws156 PubMed DOI: https://doi.org/10.1093/glycob/cws156
Ng, Y.L., Reece, R.J., & Meehan, J.C. (2006). A novel family of bacterial sialidases. Journal of Biological Chemistry, 281(49), 37586–37593. https://doi.org/10.1074/jbc.M605944200 PubMed DOI: https://doi.org/10.1074/jbc.M607114200
Punta, M., et al. (2012). The Pfam protein families database. Nucleic Acids Research, 40(D1), D290–D301. https://doi.org/10.1093/nar/gkr1181 PubMed DOI: https://doi.org/10.1093/nar/gkr1065
Sato, M., Mattei, F., Carroll, M., Lee, J.H., Roy, M., & Crocker, P.R. (2007). Sialic acid recognition by SIGLEC family of immune receptors. Nature Reviews Immunology, 7(9), 727–738. https://doi.org/10.1038/nri2144 PubMed DOI: https://doi.org/10.1038/nri2144
Severi, E., Hood, D.W., & Thomas, G.H. (2007). Sialic acid utilization by bacterial pathogens. Microbiology, 153(9), 2817–2822. https://doi.org/10.1099/mic.0.2007/002654-0 PubMed DOI: https://doi.org/10.1099/mic.0.2007/009480-0
Smith, P., Taylor, G., & Parker, B. (2015). Evolutionary dynamics of sialic acid binding proteins across diverse pathogens. Molecular Biology and Evolution, 32(8), 2038–2050. https://doi.org/10.1093/molbev/msv135 PubMed DOI: https://doi.org/10.1093/molbev/msv135
The UniProt Consortium. (2021). UniProt: a hub for protein information. Nucleic Acids Research, 49(D1), D480–D489. https://doi.org/10.1093/nar/gkaa1049 PubMed DOI: https://doi.org/10.1093/nar/gkaa1049
Vimr, E. (2013). Unified theory of bacterial sialometabolism: How and why bacteria metabolize host sialic acids. ISRN Microbiology, 2013, 816713. https://doi.org/10.5402/2013/816713 DOI: https://doi.org/10.1155/2013/816713
Zhang, Y., He, L., Song, J., Wang, Y., & Du, M. (2012). Structural insights into the function of sialic acid-binding proteins. Journal of Molecular Biology, 415(5), 545–555. https://doi.org/10.1016/j.jmb.2012.01.037 PubMed DOI: https://doi.org/10.1016/j.jmb.2012.01.037
Huang, Y., Zhao, Y., Shen, Y., Li, X., & Wang, S. (2013). Structural characterization of the sialic acid-binding site of betacoronavirus spike proteins. Journal of Structural Biology, 183(1), 108–116. https://doi.org/10.1016/j.jsb.2013.01.002 PubMed DOI: https://doi.org/10.1016/j.jsb.2013.01.002
Crocker, P.R., Paulson, J.C., & Varki, A. (2007). Siglecs and their roles in the immune system. Nature Reviews Immunology, 7(10), 255–266. https://doi.org/10.1038/nri2144 PubMed DOI: https://doi.org/10.1038/nri2056
Jones, D.T., & Green, J. (2019). Protein structure prediction: methods and applications. Annual Review of Biophysics, 48, 13–34. https://doi.org/10.1146/annurev-biophys-070317-033927 PubMed
Downloads
Published
Issue
Section
License
Copyright (c) 2025 International Journal of Scientific Research in Science and Technology
This work is licensed under a Creative Commons Attribution 4.0 International License.