A New Cu2+-Selective Sensor Based On Schiff Base as an Ionophore in PVC Matrix

Authors

  • Narendra Kumar Department of Chemistry, Maharaj Singh College, Saharanpur-247001, Uttar Pradesh, India Author

DOI:

https://doi.org/10.32628/IJSRST2512125

Keywords:

Copper, Potentiometry, Coated graphite electrode, Schiff base

Abstract

A new PVC based membrane sensor was constructed for determination of Cu2+ in various samples. The sensor exhibits a super-Nernstian slope of 29.1mV per decade over a wide concentration range (1×10-7 × 1x10-1 Mol L -1). It has a response time of about 15 s and can be used for at least 8 weeks without any divergence in potentials. The proposed sensor revealed very good selectivities for Cu2+ over a wide variety of other cations over a pH range 3–7. It was applied to the direct determination of copper in tap water samples and, as an indicator electrode, in potentiometric titrations of Cu2+ ion. The electrode was also successfully applied to the speciation of Copper in aqueous solutions.

Downloads

Download data is not yet available.

References

E. E. Tyrala, N. L. Brodsky, V. H. Auerbach, Urinary copper losses in infants receiving free amino acid solutions, Am. J. Clin. Nutr. 35 (1982) 542–545. DOI: https://doi.org/10.1093/ajcn/35.3.542

S. D. Faust, O. M. Aly, Adsorption processes for water treatment, Butterworth London. (1987) 509. DOI: https://doi.org/10.1016/B978-0-409-90000-2.50005-4

N.V. Shvedene, N. M. Sheina, G.V. Silasie, Liquid and solid-state ion-selective electrodes for copper with a membrane based on n-arylsubstituted hydroxamic acid chelates, Journal of Analytical Chemistry of the USSR. 46(1991) 252-256.

P.C. Bull, D.W. Cox, Wilson disease and Menkes disease: new handles on heavy-metal transport, Trends Genet. 10 (1994) 246-252. DOI: https://doi.org/10.1016/0168-9525(94)90172-4

M. Schaefer, J. D. Gitlin, Genetic disorders of membrane transport. IV. Wilson's disease and Menkes disease, Am J Physiol. 276 (1999) 311-314. DOI: https://doi.org/10.1152/ajpgi.1999.276.2.G311

A. Ali, H. Shen, X. Yin, Simultaneous determination of trace amounts of nickel, copper and mercury by liquid chromatography coupled with flow-injection on-line derivatization and preconcentration, Analytica Chimica Acta. 3 (1998) 215-223. DOI: https://doi.org/10.1016/S0003-2670(98)00252-9

D. Harvey, Modern Analytical Chemistry, Wiley New York. (2000) 816.

M. Thakur, M.K. Deb, The use of 1-[pyridyl-(2)-azo]-naphthol-(2) in the presence of TX 100 and N, N’-diphenylbenzamidine for the spectrophotometric determination of copper in real samples, Talanta 49 (1999) 561–569. DOI: https://doi.org/10.1016/S0039-9140(99)00054-5

S.R.G. Barreto, J. Nozaki, W.J. Barreto, Spectrophotometric determination of copper in metallic alloy using a bidithiolene: a comparative study, Microchem. J. 62 (1999) 223–228. DOI: https://doi.org/10.1006/mchj.1999.1708

N. Chimpalee, D. Chimpalee, S. Lohwithee, L. Nakwatchara, D.T. Burns, Spectrophotometric determination of copper after extraction of its chelate with bis(acetylacetone)ethylenediimine, Anal. Chim. Acta. 329 (1996) 315–318. DOI: https://doi.org/10.1016/0003-2670(96)00141-9

S. Karabocek, S. Nohut, O. Dalman, S. Guner, A new spectrophotometric reagent for copper: 3,3-(1,3-propanediyldiimine)bis-[3-methyl-2- butanone]dioxime, Anal. Chim. Acta. 408 (2000) 163–168. DOI: https://doi.org/10.1016/S0003-2670(99)00825-9

J.F. Van Staden, A. Botha, A spectrophotometric determination of Cu(II) with sequential injection analysis, Talanta. 49 (1999) 1099–1108. DOI: https://doi.org/10.1016/S0039-9140(99)00062-4

L.K. Neudachina, E.V. Oshintseva, Y.A. Skorik, A.A. Vshivkovа, N-Aryl-3-amino-propionic acids as selective reagents for the determination of copper in metallurgical products, J. Anal. Chem. 60 (2005) 240–246. DOI: https://doi.org/10.1007/s10809-005-0078-x

A. Ivaska, W.W. Kubiak, Application of sequential injection analysis to anodic stripping voltammetry, Talanta. 44 (1997) 713–723. DOI: https://doi.org/10.1016/S0039-9140(96)02115-7

M.H. Mashhadizadeh, M. Pesteh, M. Talakesh, I. Sheikhshoaie, M.M. Ardakani, M.A. Karimi, Solid phase extraction of lead (II), copper (II), cadmium (II) and nickel (II) using gallic acid-modified silica gel prior to determination by flame atomic absorption spectrometry, Spectrochim. Acta B. 63 (2008) 885–888. DOI: https://doi.org/10.1016/j.sab.2008.03.018

R.J. Cassella, O.I.B. Magalhaes, M.T. Couto, E.L.S. Lima, M.A.F.S. Neves, F.M.B. Coutinho, Synthesis and application of a functionalized resin for flow injection/ F AAS copper determination in waters, Talanta. 67 (2005) 121–128. DOI: https://doi.org/10.1016/j.talanta.2005.02.019

O. Haasw, M. Klarre, J. A. C. Broaekaert, K. Krengel-Rothensee, Evaluation of the determination of mercury at the trace and ultra-trace levels in the presence of high concentrations of NaCl by flow injection-cold vapour atomic absorption spectrometry using SnCl2 and NaBH4 as reductands, Analyst. 123 (1998) 1219. DOI: https://doi.org/10.1039/a800811f

C. E. C. Magalhães, F. J. Krug, A. H. Fostier, H. Berndt, Direct determination of mercury in sediments by atomic absorption spectrometry, Journal of Analytical Atomic Spectrometry. 12 (1997), 1231–1234. DOI: https://doi.org/10.1039/A701870C

A.A. Almeida, X. Jun, J.L.F.C. Lima, Flame AAS determination of copper in urine using a flow injection on-line preconcentration system based on a polyamine chelating ion exchange column, Atom. Spectrosc. 21 (2000) 187–193.

R.C. Campos, H.R. Santos, P. Grinberg, Determination of copper, iron, lead and nickel in gasoline by electrothermal atomic absorption spectrometry using three component solutions, Spectrochim. Acta B. 57 (2002) 15–28. DOI: https://doi.org/10.1016/S0584-8547(01)00362-7

S.L.C. Ferreira, A.S. Queiroz, M.S. Fernandes, H.C. dos Santos, Application of factorial designs and Doehlert matrix in optimization of experimental variables associated with the preconcentration and determination of vanadium and copper in seawater by inductively coupled plasma optical emission spectrometry, Spectrochim. Acta B. 57 (2002) 1939–1950. DOI: https://doi.org/10.1016/S0584-8547(02)00160-X

Chung Chow Chan (Ed.), Analytical method validation and instrument performance verification, Wiley, New York. (2004) 303. DOI: https://doi.org/10.1002/0471463728

L.W. Potts, Quantitative Analysis. Theory and practice, harper and row, New York. (1987) 656.

A.I. Vogel, Textbook of macro and semimicro qualitative inorganic analysis, Bungay, New York. (1979) 605.

A. Mohadesi, M.A. Taher, Voltammetric determination of Cu(II) in natural waters andhumanhair at a meso-2,3-dimercaptosuccinic acid self-assembled gold electrode, Talanta. 72 (2007) 95–100. DOI: https://doi.org/10.1016/j.talanta.2006.09.031

G.D. Christian, Analytical chemistry, phoenix color corp., New York. (1994) 812.

J. Fries, H. Getrost, Organic reagents for trace analysis, E. merck Darmstadt. 1(1977) 453.

J. Jakmunee, K. J. Grudpan, Flow injection amperometry for the determination of iodate in iodized table salt, Analytica Chimica Acta. 438 (2001) 299-304. DOI: https://doi.org/10.1016/S0003-2670(01)00798-X

R.S. Hutchins, L.G. Bachas, Nitrate-selective electrode developed by electrochemically mediated imprinting/doping of polypyrrole, Anal. Chem. 67 (1995) 1654-1660. DOI: https://doi.org/10.1021/ac00106a002

S. Kamata, A. Bhale, Y. Fukunaga, H. Murata, Copper(II)-selective electrode using thiuram disulfide neutral carriers, Anal. Chem. 60 (1988) 2464–2467. DOI: https://doi.org/10.1021/ac00173a006

S. Kamata, Y. Yamasaki, M. Higo, A. Bhalen, Y. Fukanaga, Copper(II)-selective electrodes based on macrocyclic polythiaethers, Analyst. 113 (1988) 45–47. DOI: https://doi.org/10.1039/an9881300045

Z. Brzozka, Transition metal ion-selective membrane electrodes based on complexing compounds with heteroatoms part 11. Complexing compounds containing sulphur atoms, Analyst. 113 (1988) 1803–1805. DOI: https://doi.org/10.1039/AN9881301803

S. Kamata, H. Murata, Y. Kubo, A. Bhale, Copper(II)-selective membrane electrodes based on o-xylylene bis(dithiocarbamates) as neutral carriers, Analyst. 114 (1989) 1029–1031. DOI: https://doi.org/10.1039/an9891401029

P.L.H.M. Cobber, R.J.M. Gherkin, J.B. Boomer, P. Barged, W. Vroom, D.N. Reinhoudt, Transduction of selective recognition of heavy metal ions by chemically modified field effect transistors (CHEMFETs), J. Am. Chem. Soc. 114 (1992) 10573–10582. DOI: https://doi.org/10.1021/ja00052a063

N. Alizadeh, S. Ershad, H. Naeimi, H. Sharghi, M. Shamsipur, Copper (II)-selective membrane electrode based on a recently synthesized naphtholderivative Schiff’s base, Fresenius J. Anal. Chem. 365 (1999) 511–515. DOI: https://doi.org/10.1007/s002160051514

M.J. Gismera, M.A. Mendiola, J.R. Procopio, M.T. Sevilla, Copper potentiometric sensors based on copper complexes containing thiohydrazone and thiosemicarbazone ligands, Anal. Chim. Acta. 385 (1999) 143–149. DOI: https://doi.org/10.1016/S0003-2670(98)00840-X

Al Ajmi, M. F., Hussain, A., Alsalme, A., Khan, R. A. In vivo assessment of newly synthesized achiral copper (II) and zinc (II) complexes of benzimidazole derived scaffold as a potential analgesic, antipyretic and anti-inflammatory. RSC Adv 6, (2016) 19475–19481. DOI: https://doi.org/10.1039/C5RA25071D

Downloads

Published

23-01-2025

Issue

Section

Research Articles

How to Cite

A New Cu2+-Selective Sensor Based On Schiff Base as an Ionophore in PVC Matrix. (2025). International Journal of Scientific Research in Science and Technology, 12(1), 132-139. https://doi.org/10.32628/IJSRST2512125

Similar Articles

1-10 of 50

You may also start an advanced similarity search for this article.