Scale Up Studies on Chemical Modification of Cellulose for Dye Removal
DOI:
https://doi.org/10.32628/IJSRST2512157Keywords:
Cellulose, DAC, Removal of Dyes, Sodium periodate, Octylamine, Schiff baseAbstract
Dialdehyde cellulose (DAC) was prepared through sodium periodate method. The resultant DAC was treated with octylamine to form cellulose Schiff base and it was characterized using various techniques such as FTIR, X-ray diffraction, elemental analysis. TGA was also conducted to find the thermal stability of the cellulose and cellulose Schiff base. Removal of Brilliant blue, Methyl orange and Bromocresol green dyes by cellulose Schiff base was studied and the percent removal of Brilliant blue, Methyl orange and Bromocresol green dyes from their solutions were 100%, 100%, and 81%, respectively. Cellulose Schiff base synthesized in the present investigation exhibits an excellent reusable property.
Downloads
References
Abou Kana, M. T., Radi, M., & Elsabee, M. Z. (2013). Wastewater treatment with chitosan nano-particles. Int. J. Nanotechnol. Appl, 3, 39-50.
Ahmed, Z., Wu, P., Jiang, L., Liu, J., Ye, Q., Yang, Q., & Zhu, N. (2020). Enhanced simultaneous adsorption of Cd (II) and Pb (II) on octylamine functionalized vermiculite. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 604, 125285. DOI: https://doi.org/10.1016/j.colsurfa.2020.125285
Arora, C., Kumar, P., Soni, S., Mittal, J., Mittal, A., & Singh, B. (2020). Efficient removal of malachite green dye from aqueous solution using Curcuma caesia based activated carbon. Desalination and Water Treatment, 195, 341-352. DOI: https://doi.org/10.5004/dwt.2020.25897
Baskar, G., Sathivel, K., & George, G. B. (2016). In vitro cytotoxicity of copper oxide nanobiocomposites synthesized by Catharanthus roseus flower extract against breast cancer cell line. J Chem Pharm Sci, 9(1), 211-214.
Couto, S. R. (2009). Dye removal by immobilised fungi. Biotechnology advances, 27(3), 227-235. DOI: https://doi.org/10.1016/j.biotechadv.2008.12.001
Crini, G., Lichtfouse, E., Wilson, L. D., & Morin-Crini, N. (2019). Conventional and non-conventional adsorbents for wastewater treatment. Environmental Chemistry Letters, 17, 195-213. DOI: https://doi.org/10.1007/s10311-018-0786-8
Dalei, G., Das, S., & Pradhan, M. (2022). Dialdehyde cellulose as a niche material for versatile applications: An overview. Cellulose, 29(10), 5429-5461. DOI: https://doi.org/10.1007/s10570-022-04619-1
Dash, R., Elder, T., & Ragauskas, A. J. (2012). Grafting of model primary amine compounds to cellulose nanowhiskers through periodate oxidation. Cellulose, 19, 2069-2079. DOI: https://doi.org/10.1007/s10570-012-9769-2
Emam, H. E., & Shaheen, T. I. (2019). Investigation into the role of surface modification of cellulose nanocrystals with succinic anhydride in dye removal. Journal of Polymers and the Environment, 27, 2419-2427. DOI: https://doi.org/10.1007/s10924-019-01533-9
Eslami, H., Shariatifar, A., Rafiee, E., Shiranian, M., Salehi, F., Hosseini, S. S., ... & Ebrahimi, A. A. (2019). Decolorization and biodegradation of reactive Red 198 Azo dye by a new Enterococcus faecalis–Klebsiella variicola bacterial consortium isolated from textile wastewater sludge. World Journal of Microbiology and Biotechnology, 35, 1-10. DOI: https://doi.org/10.1007/s11274-019-2608-y
Gita, S., Hussan, A., & Choudhury, T. G. (2017). Impact of textile dyes waste on aquatic environments and its treatment. Environ. Ecol, 35(3C), 2349-2353.
Jamee, R., & Siddique, R. (2019). Biodegradation of synthetic dyes of textile effluent by microorganisms: an environmentally and economically sustainable approach. European journal of microbiology and immunology, 9(4), 114-118. DOI: https://doi.org/10.1556/1886.2019.00018
Jin, L., Li, W., Xu, Q., & Sun, Q. (2015). Amino-functionalized nanocrystalline cellulose as an adsorbent for anionic dyes. Cellulose, 22, 2443-2456. DOI: https://doi.org/10.1007/s10570-015-0649-4
Kim, U. J., & Kuga, S. (2001). Thermal decomposition of dialdehyde cellulose and its nitrogen-containing derivatives. Thermochimica Acta, 369(1-2), 79-85. DOI: https://doi.org/10.1016/S0040-6031(00)00734-6
Kim, U. J., Kuga, S., Wada, M., Okano, T., & Kondo, T. (2000). Periodate oxidation of crystalline cellulose. Biomacromolecules, 1(3), 488-492. DOI: https://doi.org/10.1021/bm0000337
Kumari, S., Mankotia, D., & Chauhan, G. S. (2016). Crosslinked cellulose dialdehyde for Congo red removal from its aqueous solutions. Journal of environmental chemical engineering, 4(1), 1126-1136. DOI: https://doi.org/10.1016/j.jece.2016.01.008
Madivoli, E. S., Kareru, P. G., Gachanja, A. N., Mugo, S. M., & Makhanu, D. S. (2019). Synthesis and characterization of dialdehyde cellulose nanofibers from O. sativa husks. SN Applied Sciences, 1, 1-7. DOI: https://doi.org/10.1007/s42452-019-0769-9
Münster, L., Vícha, J., Klofáč, J., Masař, M., Kucharczyk, P., & Kuřitka, I. (2017). Stability and aging of solubilized dialdehyde cellulose. Cellulose, 24, 2753-2766. DOI: https://doi.org/10.1007/s10570-017-1314-x
Nigmatullin, R., Johns, M. A., Muñoz-García, J. C., Gabrielli, V., Schmitt, J., Angulo, J., ... & Eichhorn, S. J. (2020). Hydrophobization of cellulose nanocrystals for aqueous colloidal suspensions and gels. Biomacromolecules, 21(5), 1812-1823. DOI: https://doi.org/10.1021/acs.biomac.9b01721
Pietrucha, K., & Safandowska, M. (2015). Dialdehyde cellulose-crosslinked collagen and its physicochemical properties. Process Biochemistry, 50(12), 2105-2111. DOI: https://doi.org/10.1016/j.procbio.2015.09.025
Raddad, R. M. S. (2020). Cellulose Based Film with Antimicrobial Activities (Doctoral dissertation).
Slama, H. B., Chenari Bouket, A., Pourhassan, Z., Alenezi, F. N., Silini, A., Cherif-Silini, H., ... & Belbahri, L. (2021). Diversity of synthetic dyes from textile industries, discharge impacts and treatment methods. Applied Sciences, 11(14), 6255. DOI: https://doi.org/10.3390/app11146255
Smith, B. (2019). Organic nitrogen compounds III: secondary and tertiary amines. Spectroscopy, 34(5), 22-26.
Sun, B., Hou, Q., Liu, Z., & Ni, Y. (2015). Sodium periodate oxidation of cellulose nanocrystal and its application as a paper wet strength additive. Cellulose, 22, 1135-1146. DOI: https://doi.org/10.1007/s10570-015-0575-5
Teo, L. S., Chen, C. Y., & Kuo, J. F. (1997). Fourier transform infrared spectroscopy study on effects of temperature on hydrogen bonding in amine-containing polyurethanes and poly (urethane− urea) s. Macromolecules, 30(6), 1793-1799. DOI: https://doi.org/10.1021/ma961035f
Tolkou, A. K., Mitropoulos, A. C., & Kyzas, G. Z. (2023). Removal of anthraquinone dye from wastewaters by hybrid modified activated carbons. Environmental Science and Pollution Research, 1-14. DOI: https://doi.org/10.1007/s11356-023-27550-9
Trivedi, M., Branton, A., Trivedi, D., Shettigar, H., Bairwa, K., & Jana, S. (2015). Fourier transform infrared and ultraviolet-visible spectroscopic characterization of biofield treated salicylic acid and sparfloxacin. Natural Products Chemistry & Research, 5(3). DOI: https://doi.org/10.4172/2329-6836.1000186
Trupkin, S., Levin, L., Forchiassin, F., & Viale, A. (2003). Optimization of a culture medium for ligninolytic enzyme production and synthetic dye decolorization using response surface methodology. Journal of Industrial Microbiology and Biotechnology, 30(12), 682-690. DOI: https://doi.org/10.1007/s10295-003-0099-0
Yang, H. (2012). Investigation and characterization of oxidized cellulose and cellulose nanofiber films. McGill University (Canada).
Zapata‐Castillo, P., Villalonga‐Santana, L., Islas‐Flores, I., Rivera‐Muñoz, G., Ancona‐Escalante, W., & Solís‐Pereira, S. (2015). Synergistic action of laccases from Trametes hirsuta Bm2 improves decolourization of indigo carmine. Letters in Applied Microbiology, 61(3), 252-258. DOI: https://doi.org/10.1111/lam.12451
Zhang, L., Yan, P., Li, Y., He, X., Dai, Y., & Tan, Z. (2020). Preparation and antibacterial activity of a cellulose-based Schiff base derived from dialdehyde cellulose and L-lysine. Industrial Crops and Products, 145, 112126. DOI: https://doi.org/10.1016/j.indcrop.2020.112126
Zhao, Y. H., Geng, J. T., Cai, J. C., Cai, Y. F., & Cao, C. Y. (2020). Adsorption performance of basic fuchsin on alkali-activated diatomite. Adsorption Science & Technology, 38(5-6), 151-167.
Zhao, Y. H., Geng, J. T., Cai, J. C., Cai, Y. F., & Cao, C. Y. (2020). Adsorption performance of basic fuchsin on alkali-activated diatomite. Adsorption Science & Technology, 38(5-6), 151-167. DOI: https://doi.org/10.1177/0263617420922084
Downloads
Published
Issue
Section
License
Copyright (c) 2025 International Journal of Scientific Research in Science and Technology

This work is licensed under a Creative Commons Attribution 4.0 International License.