Methods of Preparation and Characterization of Cyclodextrin Encapsulated Inclusion Complex : Review
DOI:
https://doi.org/10.32628/IJSRST24113129Keywords:
Cyclodextrin, β-Cyclodextrin, Inclusion Complexes, Solubility, CharacterizationAbstract
Inclusion Complex is supramolecular system which is formed by inclusion of the guest molecules into the cavity of host molecule and these molecules are held by intermolecular forces but not by covalent bond. The special characteristic of Cyclodextrins is the ability to form an inclusion complex with viable compounds. This article focuses on the various preparation methods for inclusion complexes, their formation constant, experimental and spectral approaches to demonstrate host-guest interaction. Phase solubility diagram indicated that the solubility of guest molecule increases linearly with CD concentration in AL-type and a stoichiometry of 1:1. The inclusion complex formed by various techniques was characterized by various spectroscopic methods. The study offers a variety of studies that demonstrate how cyclodextrins can be used to enhance the solubility, stability, and effectiveness of synthetic pharmaceuticals as well as their physical, chemical, and biological properties.
Downloads
References
Guendouzi, O., Guendouzi, A., Ouici, H. B., Brahim, H., Boumediene, M., & Elkeurti, M. (2020). A quantum chemical study of encapsulation and stabilization of gallic acid in β-cyclodextrin as a drug delivery system. Canadian Journal of Chemistry, 98(4), 204-214. DOI: https://doi.org/10.1139/cjc-2019-0464
Siddiqui, A. J., Singh, R., Jahan, S., Alreshidi, M., Hamadou, W. S., Khan, A., ... & Adnan, M. (2022). Enzymes in Food Fermentations. In African Fermented Food Products-New Trends (pp. 101-133). Cham: Springer International Publishing. DOI: https://doi.org/10.1007/978-3-030-82902-5_8
Ali, K. A., Roy, P., Maity, A., & Chakraborty, P. (2021). Tailor-made cyclodextrin-based nanomaterials as drug carriers. In Tailor-Made and Functionalized Biopolymer Systems (pp. 155-200). Woodhead Publishing. DOI: https://doi.org/10.1016/B978-0-12-821437-4.00004-9
Ali, K. A., Roy, P., & Maity, A. (2021). Pranabesh Chakraborty1 1Division of Pharmaceutics, Department of Pharmaceutical Sciences & Technology, Maulana Abul Kalam Azad University of Technology, Haringhata, West Bengal, India. Tailor-Made and Functionalized Biopolymer Systems: For Drug Delivery and Biomedical Applications, 155.
Gloe, T. E. (2016). Carbohydrate Conjugates to Explore Bacterial Adhesion: From Amadori Rearrangement to Surface Functionalization (Doctoral dissertation, Christiana Albertina University of Kiel).
Amiri, S., & Amiri, S. (2017). Cyclodextrins: properties and industrial applications. John Wiley & Sons. DOI: https://doi.org/10.1002/9781119247609
Apetrei, C. (Ed.). (2016). Natural Sources, Physicochemical Characterization and Applications (Vol. 1). Bentham Science Publishers.
Yang, C. W., Zhang, X., Yuan, L., Wang, Y. K., & Sheng, G. P. (2023). Deciphering the microheterogeneous repartition effect of environmental matrix on surface-enhanced Raman spectroscopy (SERS) analysis for pollutants in natural waters. Water Research, 119668. DOI: https://doi.org/10.1016/j.watres.2023.119668
Tóth, G., Mohácsi, R., Rácz, Á., Rusu, A., Horváth, P., Szente, L., ... & Noszál, B. (2013). Equilibrium and structural characterization of ofloxacin–cyclodextrin complexation. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 77, 291-300. DOI: https://doi.org/10.1007/s10847-012-0245-2
Saenger, W. (1980). Cyclodextrin inclusion compounds in research and industry. Angewandte Chemie International Edition in English, 19(5), 344-362. DOI: https://doi.org/10.1002/anie.198003441
Prochowicz, D., Kornowicz, A., & Lewiński, J. (2017). Interactions of native cyclodextrins with metal ions and inorganic nanoparticles: fertile landscape for chemistry and materials science. Chemical reviews, 117(22), 13461-13501. DOI: https://doi.org/10.1021/acs.chemrev.7b00231
Mura, P. (2014). Analytical techniques for characterization of cyclodextrin complexes in aqueous solution: a review. Journal of pharmaceutical and biomedical analysis, 101, 238-250. DOI: https://doi.org/10.1016/j.jpba.2014.02.022
Poulson, B. G., Alsulami, Q. A., Sharfalddin, A., El Agammy, E. F., Mouffouk, F., Emwas, A. H., & Jaremko, M. (2021). Cyclodextrins: Structural, chemical, and physical properties, and applications. Polysaccharides, 3(1), 1-31. DOI: https://doi.org/10.3390/polysaccharides3010001
Pinto, L. M. A., Adeoye, O., Thomasi, S. S., Francisco, A. P., Carvalheiro, M. C., & Cabral-Marques, H. (2020). Preparation and characterization of a synthetic curcumin analog inclusion complex and preliminary evaluation of in vitro antileishmanial activity. International Journal of Pharmaceutics, 589, 119764. DOI: https://doi.org/10.1016/j.ijpharm.2020.119764
Raffaini, G., & Ganazzoli, F. (2019). A Molecular Dynamics Study of a Photodynamic Sensitizer for Cancer Cells: Inclusion Complexes of γ-Cyclodextrins with C70. International Journal of Molecular Sciences, 20(19), 4831. DOI: https://doi.org/10.3390/ijms20194831
Ol'khovich, M., Sharapova, A., Blokhina, S., Perlovich, G., Skachilova, S., & Shilova, E. (2019). A study of the inclusion complex of bioactive thiadiazole derivative with 2 hydroxypropyl β cyclodextrin: Preparation, characterization and physicochemical properties. Journal of Molecular Liquids, 273, 653-662. DOI: https://doi.org/10.1016/j.molliq.2018.10.053
Tian, Y., Jin, H., Guo, S., Lin, S., & Bao, Z. (2022). Effects of different metal ions on the physicochemical properties and microstructure of egg white gel. Journal of the Science of Food and Agriculture, 102(8), 3308-3315. DOI: https://doi.org/10.1002/jsfa.11677
Li, T., Guo, R., Zong, Q., & Ling, G. (2022). Application of molecular docking in elaborating molecular mechanisms and interactions of supramolecular cyclodextrin. Carbohydrate Polymers, 276, 118644. DOI: https://doi.org/10.1016/j.carbpol.2021.118644
Huang, D., Li, W., Li, G., Zhang, W., Chen, H., Jiang, Y., & Li, D. (2023). Effect of high-intensity ultrasound on the physicochemical properties of Tenebrio Molitor Protein. Food Hydrocolloids, 134, 108056. DOI: https://doi.org/10.1016/j.foodhyd.2022.108056
Janicka, P., Kaykhaii, M., Płotka-Wasylka, J., & Gębicki, J. (2022). Supramolecular deep eutectic solvents and their applications. Green Chemistry, 24(13), 5035-5045. DOI: https://doi.org/10.1039/D2GC00906D
Shang, Z., Liu, T., Yang, Q., Cui, S., Xu, K., Zhang, Y., & Wang, X. (2022). Chiral‐Molecule‐Based Spintronic Devices. Small, 18(32), 2203015. DOI: https://doi.org/10.1002/smll.202203015
L.J.yang,B.yang, W.chen, R. Huang, S.J. Yan, J. Lin, j.Agr. Food chem., 2010,58,8545-8552. DOI: https://doi.org/10.1021/jf101079e
Zhang M., Li J.,Jia W., chao J., Zhang L. Theoratical and experimental study of the inclusion complexes of ferulic acid with cyclodeztrins. Supramol. Chem.2009;21:597-602. DOI: https://doi.org/10.1080/10610270802596403
Schmidt, B. V., & Barner‐Kowollik, C. (2017). Dynamic macromolecular material design—The versatility of cyclodextrin‐based host–guest chemistry. Angewandte Chemie International Edition, 56(29), 8350-8369. DOI: https://doi.org/10.1002/anie.201612150
Jacob, S., & Nair, A. B. (2018). Cyclodextrin complexes: Perspective from drug delivery and formulation. Drug development research, 79(5), 201-217. DOI: https://doi.org/10.1002/ddr.21452
Suvarna, V., Gujar, P., & Murahari, M. (2017). Complexation of phytochemicals with cyclodextrin derivatives–An insight. Biomedicine & Pharmacotherapy, 88, 1122-1144. DOI: https://doi.org/10.1016/j.biopha.2017.01.157
Leclercq, L. (2016). Interactions between cyclodextrins and cellular components: Towards greener medical applications?. Beilstein journal of organic chemistry, 12(1), 2644-2662. DOI: https://doi.org/10.3762/bjoc.12.261
Song, Y., Song, Q., Liu, W., Li, J., & Tu, P. (2023). High-confidence structural identification of metabolites relying on tandem mass spectrometry through isomeric identification: A tutorial. TrAC Trends in Analytical Chemistry, 116982. DOI: https://doi.org/10.1016/j.trac.2023.116982
Ay, U. (2021). Effect of Heavy Metals on Dynamic and Static Quenching of the Fluorescence of the Host-Guest Inclusion Complex Methyl-β-Cyclodextrin by 2, 9-Dimethyl-4, 7-Diphenyl-1, 10-Phenanthroline in Aqueous Media. Journal of Applied Spectroscopy, 88(4), 838-846. DOI: https://doi.org/10.1007/s10812-021-01248-7
Rajbanshi, B., Dutta, A., Mahato, B., Roy, D., Maiti, D. K., Bhattacharyya, S., & Roy, M. N. (2020). Study to explore host guest inclusion complexes of vitamin B1 with CD molecules for enhancing stability and innovative application in biological system. Journal of Molecular Liquids, 298, 111952. DOI: https://doi.org/10.1016/j.molliq.2019.111952
Abbo, H., Cherian, A. R., Titinchi, S., & Varghese, A. (2022). An efficient inclusion complex based fluorescent sensor for mercury (II) and its application in live-cell imaging. Journal of Fluorescence, 32(3), 1109-1124. DOI: https://doi.org/10.1007/s10895-022-02931-4
Harada, A., Takashima, Y., & Nakahata, M. (2014). Supramolecular polymeric materials via cyclodextrin–guest interactions. Accounts of chemical research, 47(7), 2128-2140. DOI: https://doi.org/10.1021/ar500109h
Szente, L., Szemán, J., & Sohajda, T. (2016). Analytical characterization of cyclodextrins: History, official methods and recommended new techniques. Journal of pharmaceutical and biomedical analysis, 130, 347-365. DOI: https://doi.org/10.1016/j.jpba.2016.05.009
Sardaru, M. C., Carp, O., Ursu, E. L., Craciun, A. M., Cojocaru, C., Silion, M., & Rotaru, A. (2020). Cyclodextrin encapsulated pH sensitive dyes as fluorescent cellular probes: self-aggregation and in vitro assessments. Molecules, 25(19), 4397. DOI: https://doi.org/10.3390/molecules25194397
Badi, S., Madi, F., & Nouar, L. (2023). Effect of cyclodextrins inclusion complexes into absorption and emission spectra of P-methylaminobenzoate derivatives: A DFT and TD-DFT investigation. Journal of Fluorescence, 1-11. DOI: https://doi.org/10.1007/s10895-023-03146-x
Ganesan, V., Senguttuvan, S., Narayanan, V., Shanmugasundaran, E., Vellaisamy, K., Varadharajan, R., ... & Thambusamy, S. (2022). Silver nanoparticle decorated γ-cyclodextrin with 1, 5-dihydroxy naphthalene inclusion complex; as a sensitive fluorescence probe for dual metal ion sensing employing spectrum techniques. Chemical Physics Letters, 796, 139537. DOI: https://doi.org/10.1016/j.cplett.2022.139537
Liu, J., Ma, X., Shi, W., & Xing, J. (2021). Evaluation of enhanced UV protection property of dyed cotton fabrics based on inclusion complex of β-cyclodextrin with natural coumarin extracted from Cortex fraxini. Fibers and Polymers, 22, 1569-1579. DOI: https://doi.org/10.1007/s12221-021-0445-8
Prabu, S., & Mohamad, S. (2020). Curcumin/beta-cyclodextrin inclusion complex as a new “turn-off” fluorescent sensor system for sensitive recognition of mercury ion. Journal of Molecular Structure, 1204, 127528. DOI: https://doi.org/10.1016/j.molstruc.2019.127528
Mohandoss, S., Palanisamy, S., You, S., Shim, J. J., & Lee, Y. R. (2021). Ultrasonication-assisted host–guest inclusion complexes of β-cyclodextrins and 5-hydroxytryptophan: Enhancement of water solubility, thermal stability, and in vitro anticancer activity. Journal of Molecular Liquids, 336, 116172. DOI: https://doi.org/10.1016/j.molliq.2021.116172
Downloads
Published
Issue
Section
License
Copyright (c) 2024 International Journal of Scientific Research in Science and Technology
This work is licensed under a Creative Commons Attribution 4.0 International License.